KU LEUVEN

Cocombustion of calorific solid waste and sludge in a fluidised bed: Flanders as a model for New York

Carlo Vandecasteele, KU Leuven, Belgium

Waste in Flanders

- 2000, landfill ban for untreated MSW and some industrial wastes
- Thermal waste treatment capacity insufficient
 → exceptions

2004, 96 kton MSW; **485 kton industrial waste**; 69 kton residues of paper, textile and wood recovery were still landfilled

 To realise ban effectively, with (almost) no exceptions, more thermal treatment capacity required

Sludge in Flanders

- Shortage of incineration capacity for sludge ← amount of sludge was growing
- 2014, sewage plants (~300) produced 97 kton sewage sludge (DM)

not used fertiliser, compost \leftarrow Cu,

not landfilled \leftarrow ban
incinerated grate F, FB61power and cement plants36 kton

KU LEU

• Industrial sludges: deinking, water treatment in paper, textile, food industry

treated in FB

Fluidised bed installation

FB installation (SLECO, 2005) provided

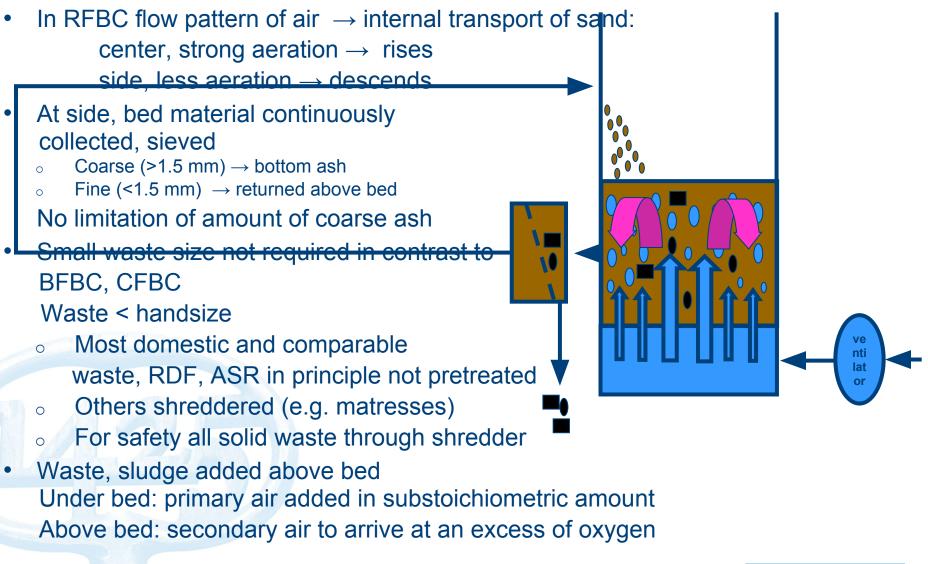
- o additional incineration capacity for industrial and MSW → landfill ban effectively maintained
- incineration capacity for treatment of sludge (sewage and industrial)

Solid wastes considered usually high calorific \rightarrow cocombustion with low calorific wet sludge ideal, otherwise cooling (water injection) to avoid ash melting, defluidisation, agglomeration

In FB waste combusted in turbulent sand bed, fluidised by air injection at bottom of bed

KU LEUV

This causes scrubbing, mechanical treatment + thermal treatment

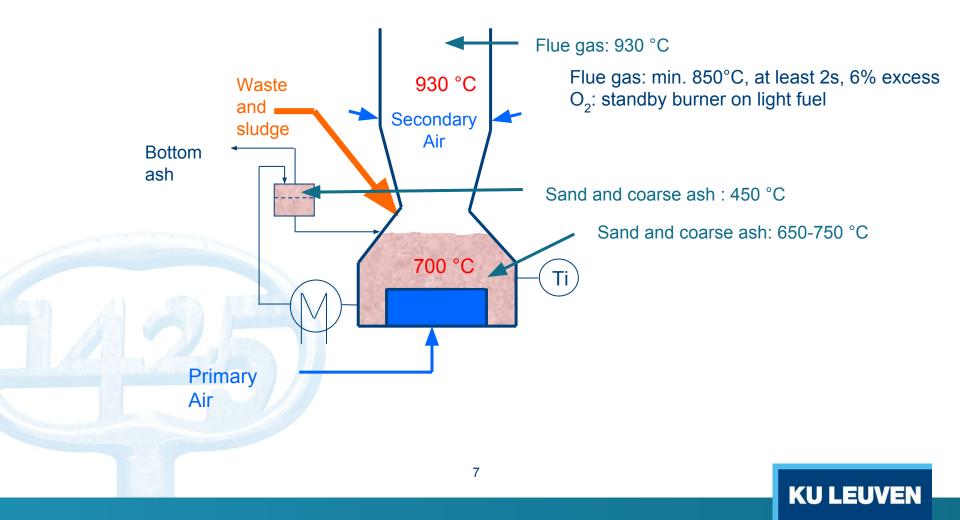

Depending on v and way of injection of air, 3 types:

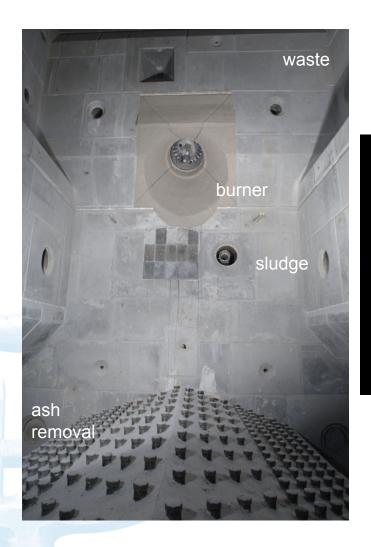
Boiling, BFB

Internally rotating, RFB

Circulating, CFB

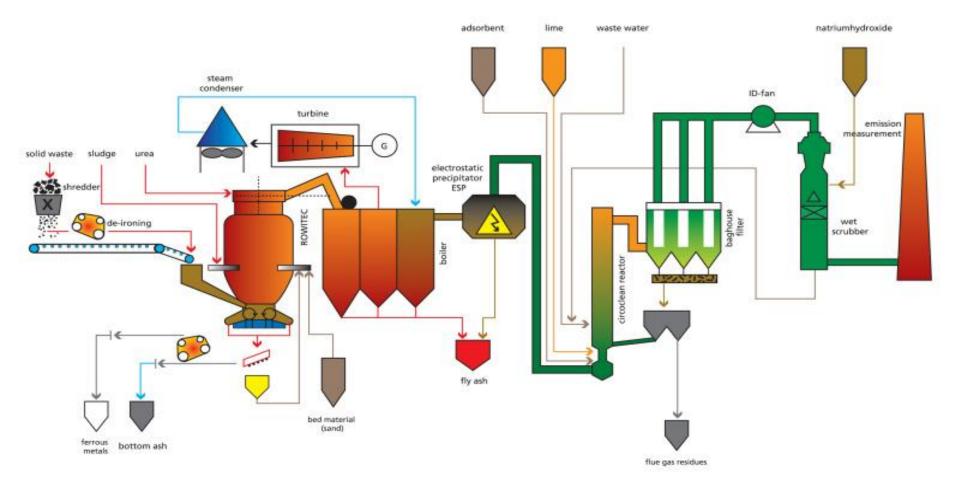
Internally rotating fluidised bed combustor : RFBC


KU LEUVE


INDAVER + SITA fluidised bed: Sleco

- Opened september 2005,
- Largest in Europe
- Lines: 3 identical
- Design: EBARA
- ROWITEC rotating FB incineration technology
- Capacity: approx. 580 000 t per year, 1/3 (industrial) sludge (15-35% DM) 2/3 non-hazardous industrial waste
- Thermal power: 134 MW
- Bed cross-sectional area of 1 FBC line: 22.4 m² (2.8 m x 8.0 m)
- Investment cost: 180 million € (2006)

FBC: Temperatures



KU LEUVEN

Fluidizing bed incinerator

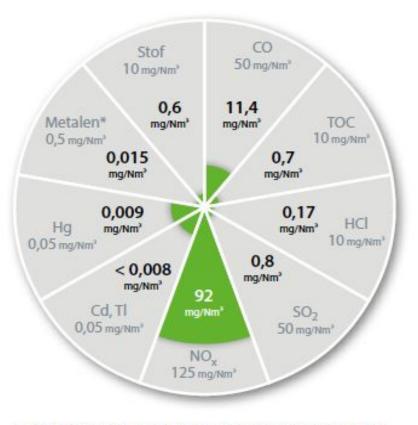
KU LEUVEN

Fluidised bed incinerators Doel – Mass balance

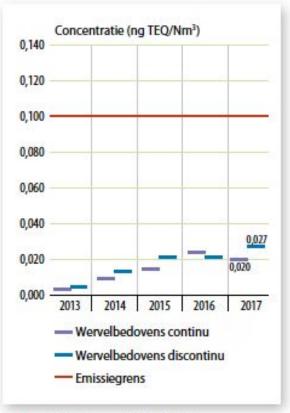
IN

Waste	618,962	tonnes
Energy		
Heating oil	1,114	tonnes
Steam	114,461	GJ
Electricity	70,144	MWh
Flue gas cleaning additives		
Quicklime	9,819	tonnes
NaOH	237	tonnes
Absorbent for dioxins and		
heavy metals	632	tonnes
DeNOx reagent	840	tonnes
Incinerator additives		
Sand	4,736	tonnes
Water		
Mains water	319,556	m³
Re-used water	20,278	m ³

OUT


Flue gases	2,518,780,000	Nm ³
Energy		
Energy	4,149,621	GJ
Water discharged		
Waste water	0	m³
Residual products		
Bottom ash	41,548	tonnes
Electrostatic filter and boiler ash	93,281	tonnes
Flue gas cleaning residue	17,452	tonnes
Scrap	2,004	tonnes

www.indaver.com


Incineration of ASR

- Environmental concern:
 - Change emissions to the air: impact on human health?
- Normal waste input: 30% WWT sludge + 70 % RDF
 - Calorific value 8.7 MJ/kg
- 8 day full scale trial:
 - Input: 50% WWT sludge + 25% RDF + 25% heavy ASR
- All input and output streams were analysed for pollutants in both situations

Daggemiddelde norm tenzij anders vermeld in milieuvergunning Prestaties 2017

(*) Som van Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn

KU LEUVEN

Vuilvracht dioxines = 57,1 mg TEQ (in normale omstandigheden)

www.indaver.com

Human toxicity, POPs

INPUT	Sludge/RDF (30/70)	Sludge/RDF/ASR (50/25/25)	
PCDD/Fs [µgTEQ/ton]	2.8	60	
Dioxin-like PCBs [µgTEQ/ton]	9.4	197	
PCBs [mg/ton]	445	3,586	
PAH [mg/ton]	6,127	38,129	

- POP concentration in input higher with ASR
- Most important conclusions:

0

- Not much change in POP output compared to normal input
- POPs in the input are efficiently destroyed during incineration
- Formation of new POPs in post combustion process is to a large extent independent of POP input

Human toxicity, heavy metals

INPUT		Sludge/RDF (30/70)	Sludge/RDF/ASR (50/25/25)	
Hg	[g/ton input]	4.4	6.6	
Cd + Tl	[g/ton input]	36	30	
Other (sum Sb,As,Pb,C	[g/ton input] Cr,Co,Cu,Mn,Ni,V,Sn)	1,235	2,064	

Inputs of heavy metals increase, except Cd +TI
 Emissions remain well below regulatory limit

 Hg:
 0.009
 0.032
 0.05 mg/Nm³
 Other HM
 0.015
 0.021

Ecluse

3 SLECO FB incinerator lines (sludge & solid waste) situated in INDAVER waste **treatment complex** in Antwerp (left bank) along with a.o.3 grate furnace incinerator **lines** (household & commercial waste)

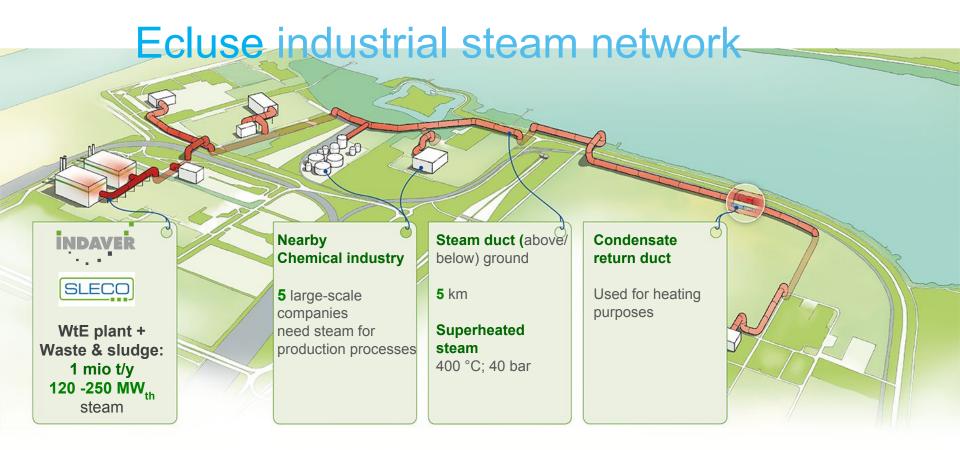
Overall 1,000,000 ton/y; heat (steam) production: 250 MW_{th}

MSW, sludge contain material from biological origin. Energy ~50% renewable, ~50% of CO₂ climate neutral

Indaver Relight (2) Indaver Relight (1) Fluidised bed Pre-treatment plant incinerators Ash treatment **Dispatch hall**

Grate incinerators

Port of Antwerp home to largest chemical cluster in Europe Chemical industry energy intensive, needs lots of steam for use in distillation, evaporation/drying, driving endothermal chemical reactions



Ecluse

- In WtE, the steam generated in boiler is applied in a Rankine superheated steam cycle to generate electricity using turbine, as in fossil fuel power plant
- In WtE less advanced steam conditions (400°C, 40 bar) ← flue gas (more Cl, Na, K) corrosive and smaller installations
 - \rightarrow lower η_e (typically 20-25%)

In WtE (as in other power plants) 3 possibilities for energy utilisation:

- o generate electricity, residual energy (LP steam from turbine) lost in condenser→ limited $η_e$
- generate electricity, and also use residual thermal energy (steam, hot water) e.g. in district heating network. CHP → high overall η. Ex. Scandinavian countries, Vienna, Paris
- o use high T, high p steam (in part) directly→ high overall η (up to 80-90%).
- In many countries (e.g. B) WtE not in or near city, but in industrial area.
 Steam can then be used in an industrial steam network eg the ECLUSE network from Indaver¹⁶

Location: Antwerp port– Waasland port

KU LEUVEN

ECLUSE provides high temperature, high pressure, **process steam** to chemical companies and replaces approximately 10 steam boilers

17

ECLUSE in figures

Conclusion

- In Flanders SLECO + ECLUSE provide:
- Combustion capacity
 - High calorific MSW and non-hazardous industrial waste
 - Wet sludge (sewage and industrial)
- High p and T process steam for (chemical) industry

 As in New York similar needs exist, a similar installation may prove highly useful