SUSTAINABLE WASTE MANAGEMENT: The Forefront of Innovation 2018 EEC/WTERT Bi-Annual Conference

An Infrastructural Commons:

sustainable waste management & multipleuse facilities

Professor Hillary Brown
City University of New York
4 October 2018

SUSTAINABLE WASTE MANAGEMENT: The Forefront of Innovation 2018 EEC/WTERT Bi-Annual Conference

shared resources shared space

DEF: "land or resources belonging to or affecting the whole of a community"

urban infrastructural systems as a commons

integrated relationships: shared resources/shared space

The Infrastructural Commons: a paradigm for waste management

a cooperative framework for shared residual resources and shared (public) use of infrastructural space

shared (residual) resources

Nature's example

an integrated, shared, and self-regulated "commons

- A bounded network of interacting and co-located parts
- System of stocks and flows between producers, consumers, decomposers and nutrient reservoirs
- Resource (waste) cycling among components: energy, water, nutrients

integrated and colocated urban systems

Promote beneficial exchanges across multiple sectors to:

- reduce collective system costs
- improve performance
- reduce environmental and social impacts.

Foster synergies by:

- proactive co-location
- capitalizing on adjacent or nearby land-uses, natural systems or resources

Infrastructural Commons: closed-loop cycling of energy and matter Hammarby Sjöstad, Stockholm, Sweden

shared (residual) resources

Energy from wastewater & waste (organic)

Lille Métropole Organic Waste Recovery and Transfer Center, Lille, France

shared resources (residuals)

Biogas from organic waste and wastewater + bus depot

Lille Métropole Organic Waste Recovery Center and Transfer Center, Lille, France

- Combined centralized refueling and overnight bus depot, reducing mileage traveled
- Reduced CO₂ using barges for waste transport
- Incorporated visitors center

Lille Metropole Urban Community

urban systems as "commons"

shared use of infrastructural space - 4 water treatment plant examples

Co-locating WTE + Ecorium ("museum of garbage") + public park Naka Waste-to- Energy Plant Hiroshima, Japan

Energy-from-waste + visitors center + recreational facility

Amager Bakke EFW plant, Copenhagen, Denmark

SWA Waste-to-Energy Facility + visitors center + water recycling facility

Solid Waste Authority, Palm Beach County, Florida

Solid Waste Treatment Center + powerplant + environmental center

Landfill-to-Resource Recovery Center Belo Horizonte, Brazil

Recovery and regenerative processes from multiple sectors

- Landfill methane recovery feeds 4.5
 MW capacity power plant
- Colocated facilities include:
 - Composting plant
 - Construction waste recycling facility
 - "Seedling station" for trees and plants to sequester CO₂
 - Hazardous medical waste plant
 - Recycling tire rubber
 - Environmental Center (144,000 visitors annually
- Reduced GHG emissions by 237,473 tCO²e/ in single year
- Gets CER credits and % of electricity sold

example of commons governance

Energy-from-waste facility + community engagement

Isséane: Issy-les-Moulineaux, France

example of commons governance

Waste transfer/ recycling center + community engagement

27th Avenue Waste Transfer Station/Recycling Center, Phoenix, Arizona

Justification for infrastructural commons: integration and exchange and multiple use of space

Benefits/Cost savings

- (Colocation) Optimized land use \$
- Synergistic cascading of waste energy, water, nutrients or other resources \$
- Economies of scale \$
- Eliminated redundancies in maintenance and operations \$
- Reduced environmental impact/resource conservation
- Reduced construction disruption
- Community benefits
- Job creation and new tax revenue
- Increase resiliency

METRICS

SO Site optimization

ES Economies of scale

OS Operational savings

RC Resource Conservation

RE Reduced environmental impact

RD Reduced disruption

PA Public amenity /community

benefit

EB Job creation/new revenue

RE Resiliency

2016 study - infrastructural symbiosis

"Urban Infrastructure Commons, Spring Creek Cross-sector Synergies" Jamaica Bay, New York

Closed-loop savings

- Eliminate NYC sludge drying costs
- Beneficial use of biomethane
 - Electricity & heat production (CHP)
 - Renewable fuel for ½ MTA fleet
- Local food production

2017 advanced design studio

"Urban Infrastructure Commons, Spring Creek Cross-Sector Synergies" Jamaica Bay, New York

the infrastructural commons

- As planning paradigm, infrastructural commons presents great synergistic opportunities - solves multiple problems with single integrated solutions
- Requires commitment to to cooperate, share space, waste, and work in reciprocal relationships with public or private sectors and other prospective users

Thank you

