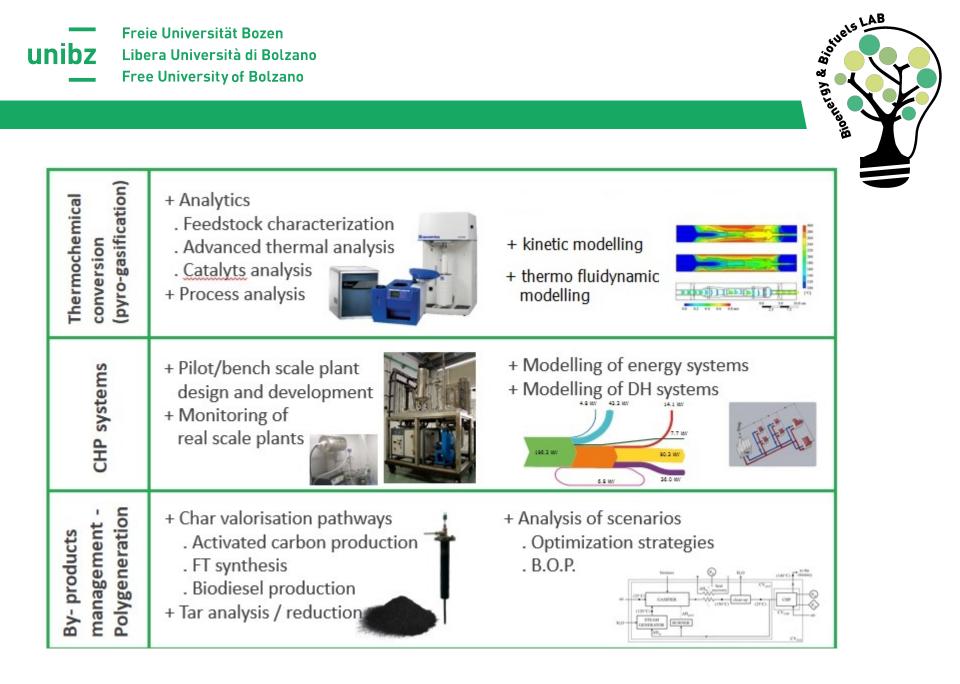
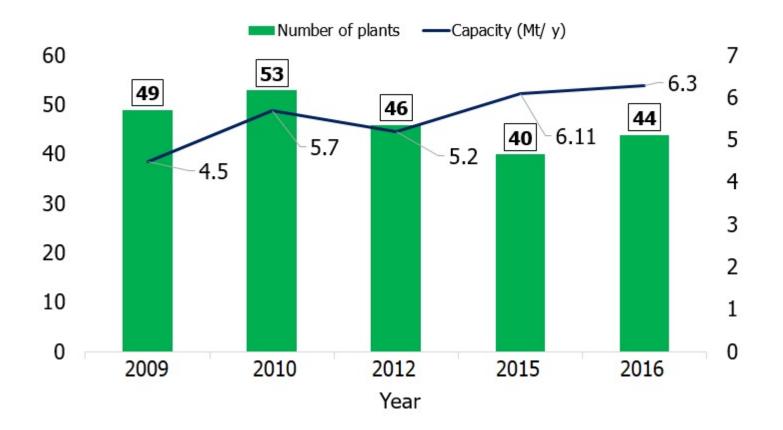


2018 EEC/WTERT Bi-Annual Conference Sustainable Waste Management: The Forefront of Innovation

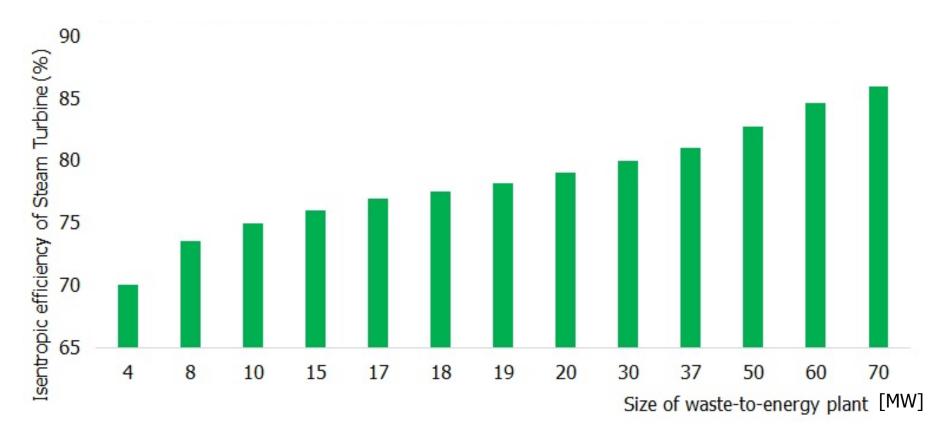
The City College of New York - October 4th & 5th, 2018

A case study of gasification CHP in northern Italy in the European context and comparison to traditional combustion systems


Marco Baratieri

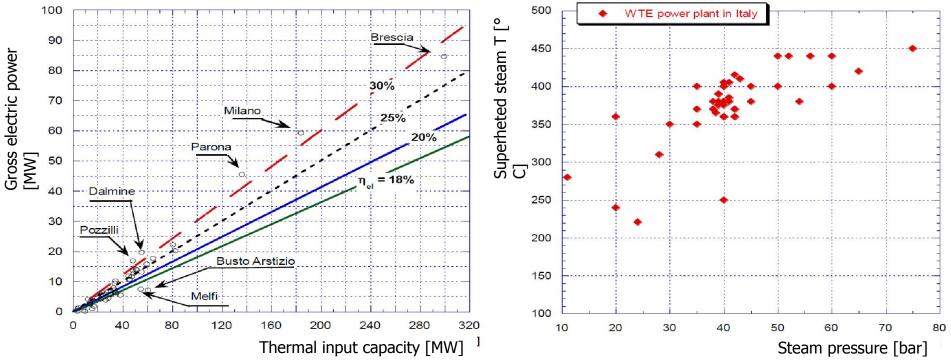


unibz


Waste - to - energy plants in Italy

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Size of W2E plants and efficiency of steam turbines


Source: adapted by Consonni, 2014

id a file and a file a

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Operational parameters of Italian waste-to-energy plants

Source: Branchini, 2012

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Waste-to-energy plant in Brescia

Sources: Chaliki et al., 2014 Bogale & Viganò,2014

- ✓ 3 lines: 2 MSW and 1 biomass
- ✓ In 2008, the facility burned ~ 801 kt/y
 - The electrical efficiency exceeds 27 %
- ✓ The facility covers approx. 75% of the city's heat demand
- In 2006 it was accredited by Global Waste To Energy Research and Technology Council (WTERT) as the best WtE plant in the world

Waste management crisis in Naples

- ✓ The Naples waste management crisis is a series of events surrounding the lack of waste collection in Campania region that took place from 1994 to 2012
- ✓ Since the <u>mid-1990s</u>, Naples and the Campania region have suffered from the <u>dumping of municipal solid waste into overfilled landfills</u>.
- ✓ Beginning on 21 <u>December 2007</u>, the municipal <u>workers refused to pick up any further</u> <u>material</u>; as a result, the waste had begun to appear as regular fixtures on the streets of Naples, posing grave health risks to the metropolitan population.
- ✓ Heavy metals, industrial waste, and chemicals and household <u>waste</u> were <u>dumped</u> <u>near roads and burned</u> to avoid detection, leading to severe soil and air pollution.
- ✓ <u>In 2008</u>, the (at the time) new waste commissioner, Guido Bertolaso accelerated the recovery plan by approving the <u>development of new landfill sites and an incinerator</u>.

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

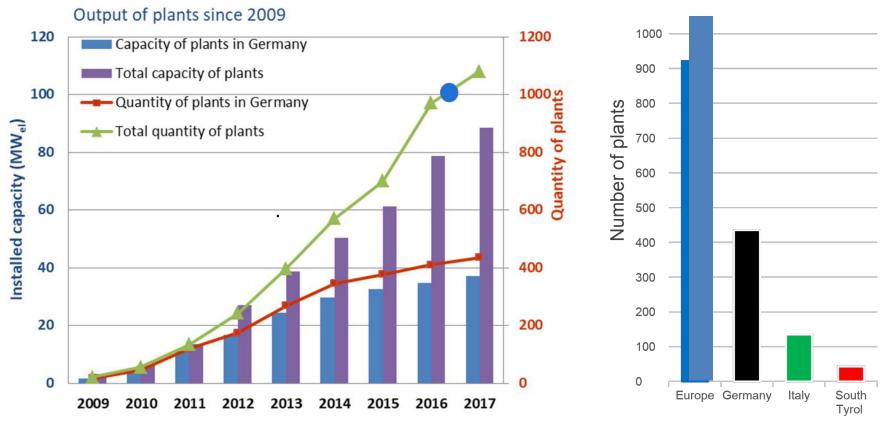
The Acerra waste-to-energy plant

✓ Since September 2009, the plant has been capable of functioning at full power.

Bioerler 87 & Biologia

- Working full power, the plant can transform quantities of refuse equal to 1,950 tons per day into energy, for a total of 600,000 tons per year.
- 120 MWe, 340 MWth and 380 tonnes of steam produced per hour
- The annual consumption of 200,000 households can be met by the production of electricity by the plant when working at full capacity

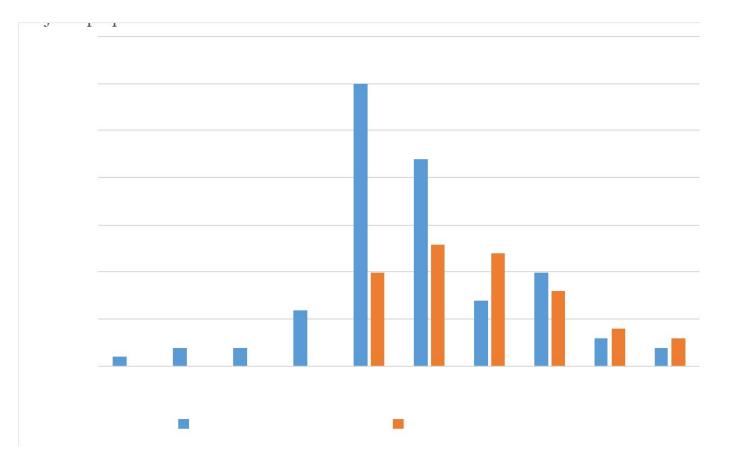
For the Acerra plant, the best technology available has been adopted to ensure minimum environmental impact in relational to emissions into the atmosphere, liquid discharges, solid residues, noise and traffic.


Some remarks & status quo

- ✓ The totality of waste-to-energy plants in Italy and the vast majority of waste-to-energy plants worldwide are (for the moment) incineration facilities.
- ✓ Incineration of MSW has several advantages but also a few obvious limitations.
 - The size vs electrical efficiency, the management of ash remains a challenge, for the years 2004 – 2007 the CHP facilities were equal to electricity plants
- ✓ For the case of biomass, Italy and other Central-European countries have installed several **gasification** facilities.
- ✓ Gasification can be an interesting solution to be investigated due to the increased electrical efficiencies and due to the high quality of the produced solid by-product, i.e. char.
 - The example of South Tyrol can be used as a case study

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Small scale gasification: facts & figures Europe ~ 1040; Germany ~ 435*, Italy ~ 120-150; South Tyrol ~ 46



[D. Bräkow, 9. "Internationale Anwenderkonferenz Biomassevergasung", 5. Dezember 2017 / Innsbruck]

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Gasification technology development

Relevant projects on gasification

GAST (2013-16): "Experiences in biomass **Ga**sification in **S**outh **T**yrol: energy and environmental assessment"

NEXT GENERATION (2016-17): "Novel **EXT**ension of biomass poly-**GENERATION** to small scale gasification systems in South-Tyrol

WOOD-UP (2016-2019): "Optimization of **WOOD** gasification chain in South Tyrol to prod**U**ce bio-energy and other high-value green **P**roducts to enhance soil fertility and mitigate climate change"

FlexiFuelGasControl (2017-2020): "Increased FUEL FLEXIbility and modulation capability of fixed-bed biomass GAS ifiers by means of model based CONTROL"

innovation park

LAIMBUR

research

SÜDTIROI

ALTO ADIGE

unibz Lib Fre

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Relevant projects on gasification

GAST (2013-16)

Plant monitoring

NEXT GENERATION (2016-17)

Char industrial valorization

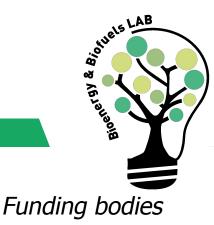
WOOD-UP (2016-2019)

Char in agriculture

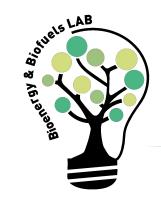
Project partners

AUTONOME PROVINZ BOZEN SÜDTIROL

PROVINCIA AUTONOMA DI BOLZANO ALTO ADIGE


 efre · fess südtirol · Alto Adige Europäischer Fonds für regionale Entwicklung Fondo europeo di sviluppo regionale

FlexiFuelGasControl (2017-2020)


Fuel flexibility and predictive control

The NEXT GENERATION project (2016-17)

"Novel **EXT**ension of biomass poly-**GENERATION** to small scale gasification systems in South-Tyrol"

Project partners

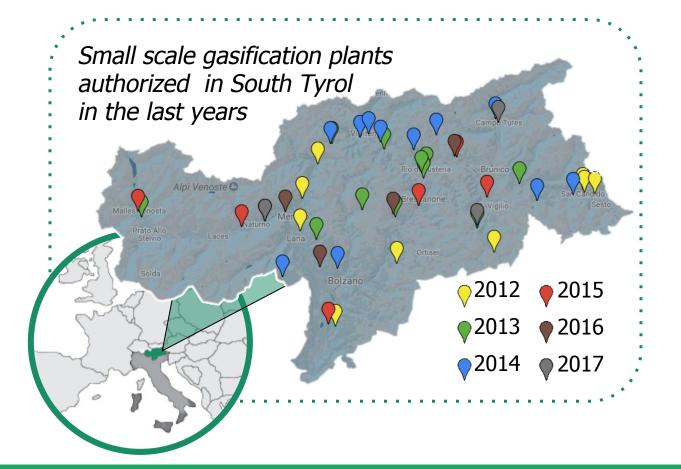
Funded by: Autonomous Province of Bolzano

AUTONOME PROVINZ BOZEN - SÜDTIROL

Abteilung 40. Bildungsförderung, Universität und Forschung

PROVINCIA AUTONOMA DI BOLZANO - ALTO ADIGE

Ripartizione 40. Diritto allo Studio, Università e Ricerca scientifica


Aims of the project

- 1. Complete the dataset of small-scale gasification technologies in S-T
- 2. Evaluate the **main products** and **by-products fluxes** and **characteristics**
- 3. Assessment of valorization pathways of gasification by-products (char)
 - a. adsorbent
 - b. catalyst support (FT-synthesis, DRM)
 - c. tar cracking application (ongoing)
 - d. energy production (co-firing)

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

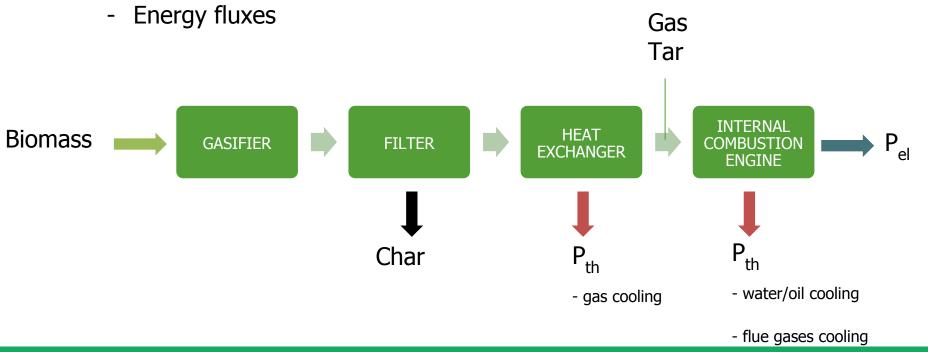
AB-auanB

Distribution of gasification plants in South-Tyrol

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Installed technolgies

Technology	Reactor	Biomass		Thermal power [kW]
Burkhardt GmbH	Rising co-current	Pellet	180	270
Entrade Energiesysteme GmbH	Downdraft Fixed bed	Pellet A1	25	60
Future Green Srl (Wubi)	Downdraft Fixed bed	Woody chips	100	200
Hans Gräbner	Downdraft Fixed bed	Woody chips	30	60
Holzenergie Wegscheid GmbH	Downdraft Fixed bed	Woody chips and brickets	140	270
Kuntschar Energieerzeugung GmbH	Downdraft Fixed bed	Woody chips	150	260
Spanner Re ² GmbH	Downdraft Fixed bed	Woody chips	45	105
Stadtwärke Rosenheim	Double stage Fixed bed	Woody chips	50	110
Syncraft Engineering GmbH	Double stage Fixed bed	Woody chips	250	990
Urbas Maschinenfabrik GmbH	Downdraft Fixed bed	Woody chips	296	550
Xylogas & EAF	Downdraft Fixed bed	Woody chips	440	880



Monitoring activities

Analyzed parameters

- Feedstock and gasification products (gas, char e tar) characteristics
- Mass fluxes

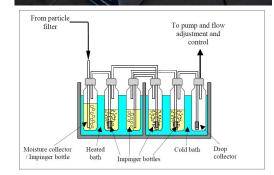
Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

On site monitoring activities

Mass fluxes

- Woody biomass flow rate
- Gasifying agent (air) flow rate
- Producer gas flow rate
- Char flow rate

Energy fluxes

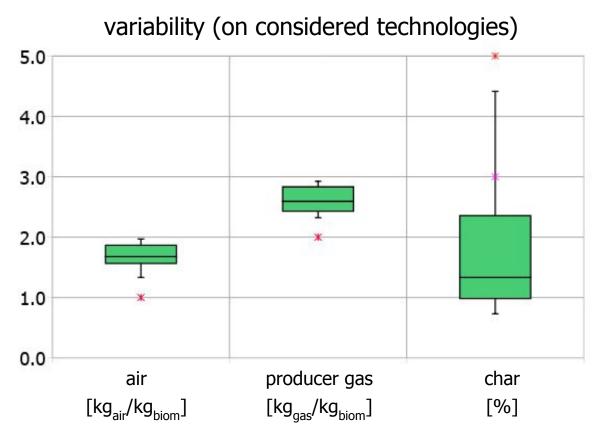

- Input fuel
- Producer gas
- Power and heat

By-products characterization

Liquid: tar

Solid: char

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

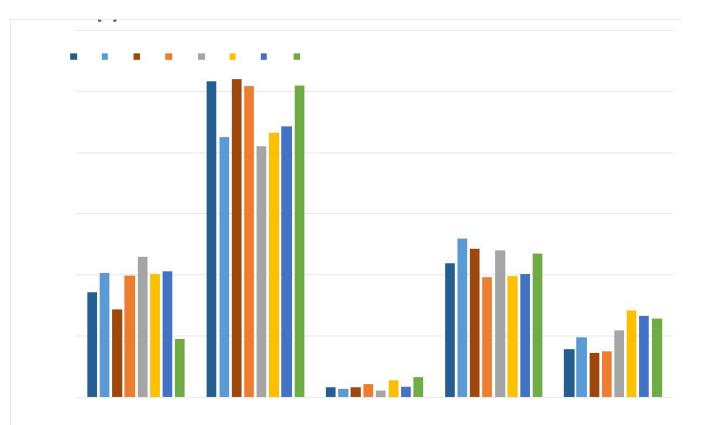

Mass balances of selected technologies

Technology	Dry biomass [kg/h]	Air [kg/h]	Producer gas [kg/h]	Char [kg/h]	Mass balance closure [%]
Α	39.6	68.7	107.6	0.7	-
В	127.3	205.8	313.9	1.3	-5.4
С	116.9	155.6	271.4	1.1	-
D	123.8	185.0	297.6	5.1	-2.0
E	42.6	78.2	121.3	0.7	1.0
F	229.0	363.3	558.8	22.8	-1.8
G	338.4	663.0	990.4	3.6	-0.7
н	150.8	296.9	426.5	1.1	-4.5

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Mass balance

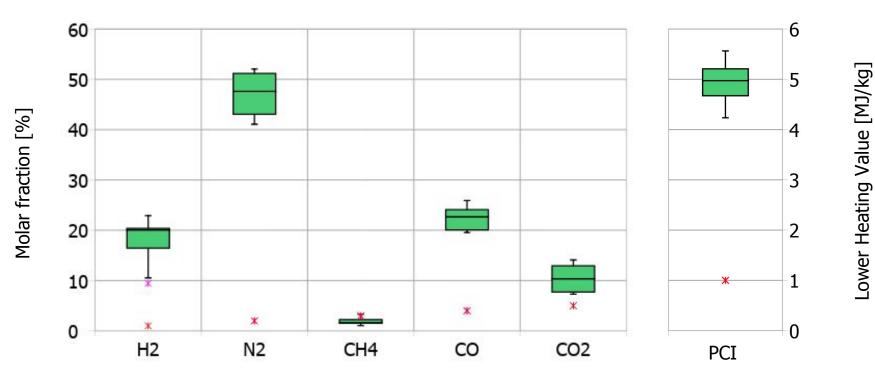
unibz



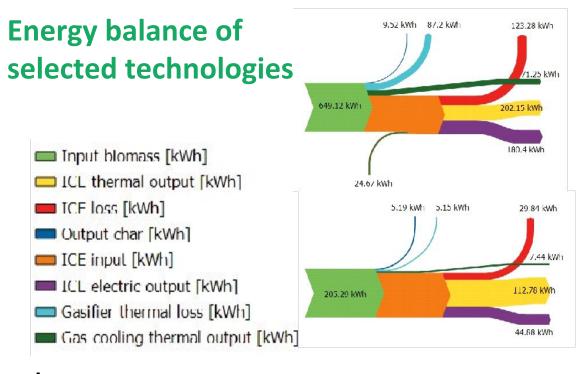
AB-Jahan B

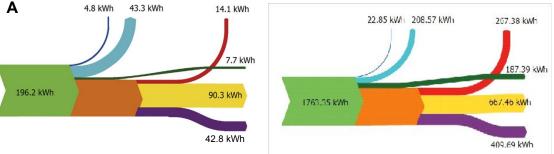
Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

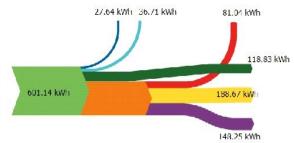
AB-Jallaola

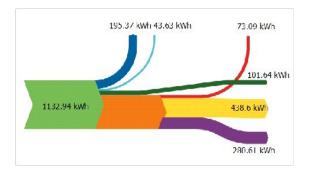

Producer gas composition

UnibZFreie Universität BozenLibera Università di BolzanoUniversità Liedia de Bulsan


Producer gas composition

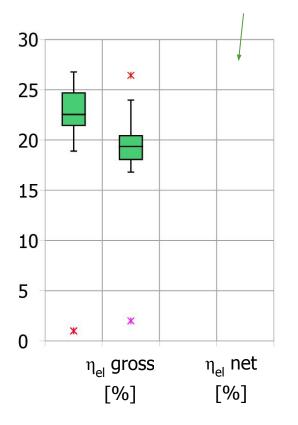

variability (on considered technologies)

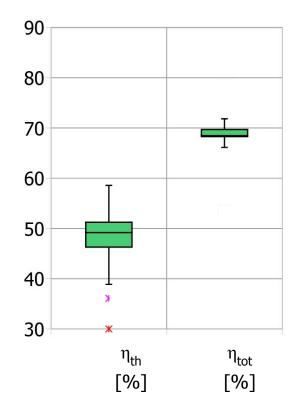



AB-auaoig

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Gasification performance parameters

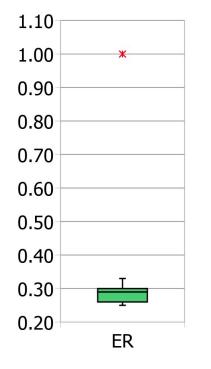

Technology	A	В	С	D	E	F	G	н
ER	0.30	0.26	0.29	0.25	0.29	0.26	0.33	0.30
η _{EL}	18.3%	26.4%	16.8%	18.8%	19.9%	21.9%	19.9%	17.4%
η _{τн}	49.9%	42.1%	52.5%	51.2%	58.6%	47.7%	48.5%	36.1%
η _{τοτ}	68.2%	68.6%	68.3%	69.9%	78.5%	69.6%	68.4%	53.5%
kg _{BIOM} /kWh _{EL}	0.93	0.71	0.97	0.83	0.95	0.82	0.83	1.05

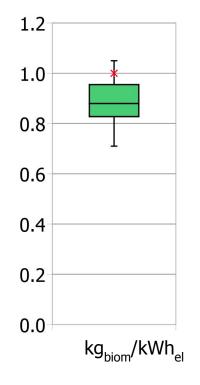

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

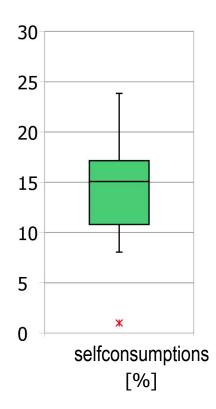
Performance

unibz

Dual fuel engine (3 l/h of vegetable oil)




Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan


unibz

Characteristic parameters

Freie Universität Bozen unibz Libera Università di Bolzano Università Liedia de Bulsan

Combustion Vs Gasification: performance in real operation

Boiler	·-ORC	Gasifier-ICE
79	94	95
790	940	43
4160	4710	98
6290	7140	196
1454	1703	40
14.4	15.6	6.6
15.6	15.1	17.8
11.2	11.5	0.75
	79 790 4160 6290 1454 14.4 15.6	79094041604710629071401454170314.415.615.615.1

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Combustion Vs Gasification: performance in real operation

	Boiler	-ORC	Gasifier-ICE
Power load (%)	79	94	95
Gross electric efficiency (%)	12.6	13.2	21.8
Thermal efficiency (%)	66.0	66.2	49.9
Power-to-heat ratio (-)	0.19	0.20	0.44

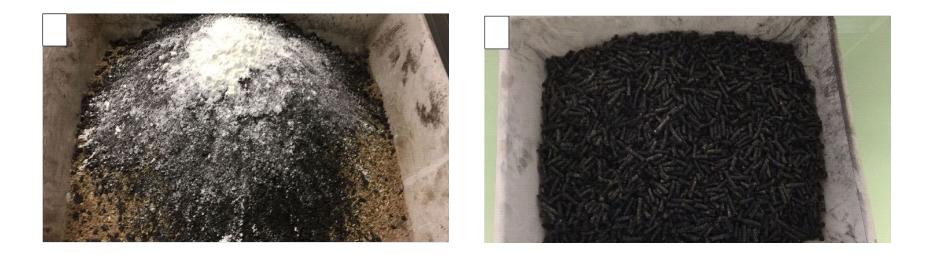
Higher electric efficiency for gasifier-ICE @ small scale

Flexible operation of boiler-ORC (partial load)

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Char characterization

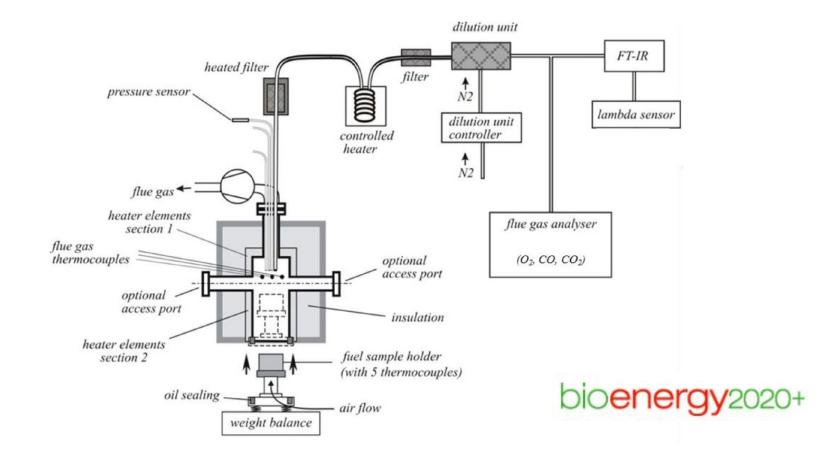
Technology	A	В	С	D	E	F	G	Н
Ash [%]	27.84	16.08	49.52	31.50	13.34	6.49	29.17	25.64
C [%]	68.63	80.23	48.03	66.96	78.97	91.59	69.46	69.49
H [%]	0.33	0.49	0.89	0.18	0.68	0.52	0.11	0.20
N [%]	0.83	0.23	0.25	0.16	0.20	0.25	0.12	0.46
O [%]	2.37	2.69	1.31	0.57	6.50	0.60	0.87	3.88
LHV [MJ/kg]	23.04	26.64	14.33	19.65	25.38	30.81	22.84	24.12
PAH [mg/kg]	4881.4	2625.6	2.76	315.6	1223.5	85.6	31.43	441.2
PCB [mg/kg]	339.5	10.7	0.03	0.56	1.83	0.40	0.20	107.8
BET [m2/g]	352	128	78	281	587	272	320	306


Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Co-FIRING OF WOOD/CHAR MIXTURES

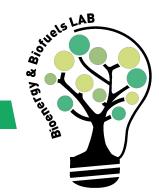


Preparation of saw dust and char blends pellets



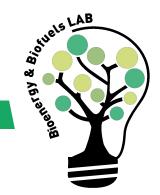
Fuel	Pure saw dust pellets	Saw dust with 10% char	Saw dust with 20% char
Denomination	0% char	10% char	20% char

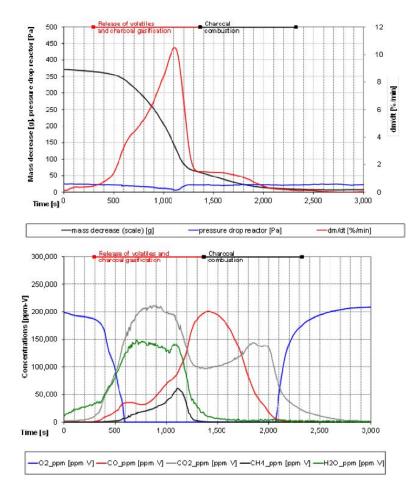
Lab combustion chamber

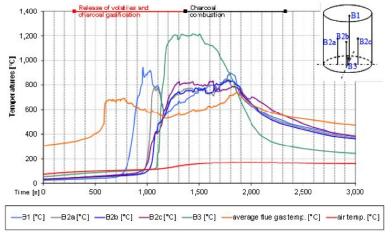

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Chemical analyses of fuels

		0% char	10% char	20% char	
Mechanical durability	%	95.9	98.0	96.8	≥ 97.5 % (ISO 17225-2)
Moisture content	%wt fb	7.4	9.2	8.8	
Ash content	%wt db	1.26	1.87	2.2	no ash melting
CO ₂ -free ash content	%wt db	0.99	1.42	1.62	
С	%wt db	51.3	51.4	51.8	small increase
Н	%wt db	5.5	5.4	5.2	
N	%wt db	0.21	0.23	0.19	
S	mg/kg db	190	204	221	increase
Cl	mg/kg db	115	108	117	


Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano


Chemical analyses of fuels


		0% char	10% char	20% char
Si	mg/kg db	658	778	668
Са	mg/kg db	3170	4540	5680
Mg	mg/kg db	354	467	551
AI	mg/kg db	286	307	262
Fe	mg/kg db	241	289	263
Mn	mg/kg db	101	117	127
Р	mg/kg db	244	262	279
K	mg/kg db	1330	2210	2820
Na	mg/kg db	19.5	36.8	45.5
Zn	mg/kg db	27.8	29.9	40.8
Pb	mg/kg db	3.0	3.0	3.0
TIC	mg/kg db	57000	65500	73000
Si/K	mol/mol	0.69	0.49	0.33

unibz

Combustion performances

Fuel mass loss and pressure drop in the reactor (left up), temperatures (fuel bed, average flue gas and air) (right), concentrations of the most important flue gas components (bottom) for **20% char**.

Freie Universität Bozen unihz Libera Università di Bolzano Free University of Bolzano Release ratios of S, Cl, K, Na, Zn and Pb for the fuel tested 0% char ■ 10% char 20% char 100 90 release of relevant aerosol forming elements [%] 80 70 60 50 40

K

Na

Zn

Pb

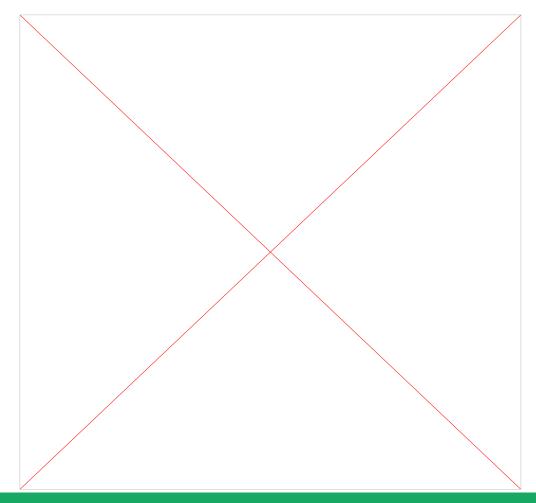
30

20

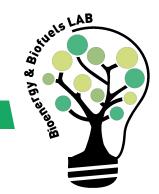
10

0

S


C

unibz


Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Estimated aerosol emissions of all fuels tested

unihz

ASSESSMENT OF INNOVATIVE PATHWAYS FOR CHAR VALORIZATION

Valorization of biomass gasification char

Characterization:

unihz

Results:

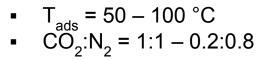
- Ultimate and proximate analysis
- Constant volume calorimetry
- Thermogravimetric analysis
- Physisorption analysis
- Small-angle X-ray scattering
- Wide-angle X-ray scattering
- Scanning electron microscopy

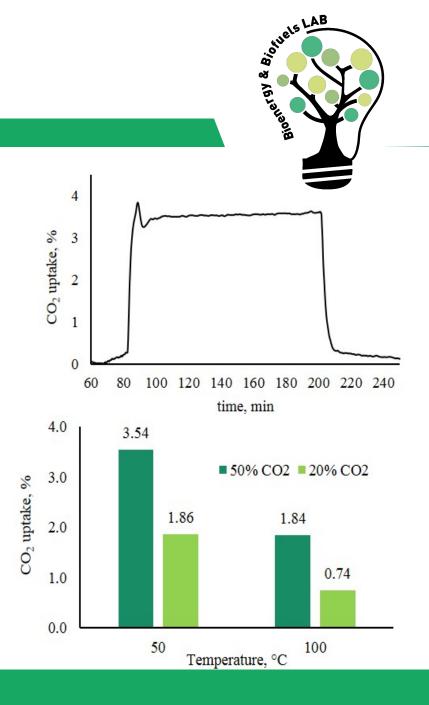
High carbon content (up to 90%)

- Very large specific surface area (up to 600 m²/g)
- Micro-porous structure
- High surface reactivity

Similarities between char and activated carbon

Possible utilization of char as substitute for activated carbon both in **adsorption** and in catalytic **applications**


Char as adsorbent for CO₂ uptake

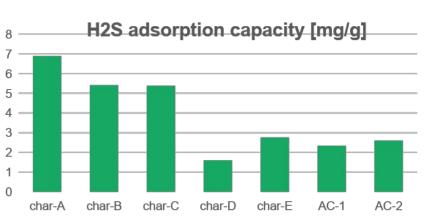

(1)

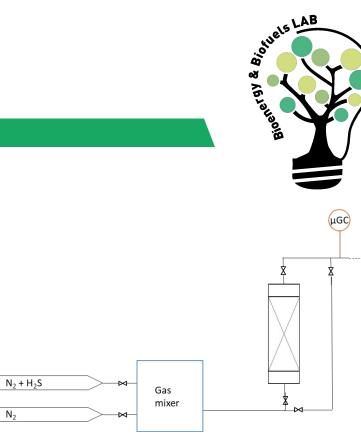
Adsorptive: CO₂

Adsorbent: gasification char

Thermo-gravimetric tests run in a Jupiter STA449-F3 (NETZSCH)

Char as adsorbent for H₂S uptake


Adsorption tests performed in a lab-scale fixed-bed quartz reactor


- Inlet gas: 250 ppmv of H₂S in N₂
- Total gas flow: 100 Nml/min
- Char-bed height: 2.5 cm (150-200 mg)
- T = T_{amb}

unibz

Adsorption capacity $[mg_{H2S}/g_{char}]$:

$$m_{ads} = \frac{M \cdot P \cdot Q}{R \cdot T \cdot m_{char}} \int_{o}^{t_{fin}} (c_{in} - c_{out}) dt$$

Char as catalyst support for FTS

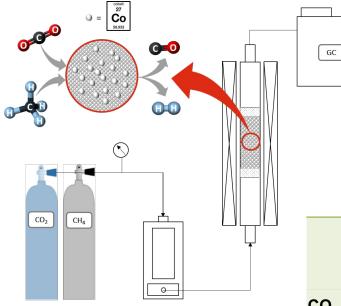
Precursors:

 $Fe(NO_3)_3 \cdot 9H_2O$

Supports:

Commercial activated carbon

Method: Incipient wetness impregnation


0.6	B	Exhaust gas	
N ₁ Cpr		CO conv., %	
$Co(NO_3)_2 \cdot 6H_2O$	Char, 20% Co	2.6	
	AC, 20% Co	27.7	
	Literature	15 – 80	
Char	Char, Fe	26	
HNO ₃ treated char			
CO ₂ activated, HNO ₃ treated char	 Fixed- 	bed reactor	

- $H_2 : CO = 2 : 1$
- T = 240°C
- P = 16 bar
- WHSV = 3600 ml $g^{-1} h^{-1}$
- t = 24 72 h

unibz

Char as catalyst support for DRM

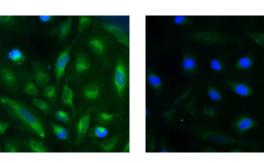
 $CO_2 + CH_4 \rightarrow 2CO + 2H_2$

- CH₄:CO₂ = 1:1
 T = 850 °C

- P = 1 atm
- WHSV= 6500 ml g⁻¹ h⁻¹
- t = 4 5 hours

%	Pure char	Char-based catalysts			
		10% Co	15% Co	20% Co	HNO ₃ , 10% Co
CO ₂ activity	17.73	22.52	12.06	11.72	29.04
CH ₄ activity	12.41	17.14	7.56	5.76	18.97
H ₂ yield	1.74	1.33	0.76	0.63	2.87
CO yield	10.95	14.44	7.84	7.12	17.54

unibz


Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Char characterization - toxicity

- 1. Germination index (cress seeds)
- 2. Germination tests (corn plants)
- 3. High content screening (human cellular models)

1

unibz

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Remarks

Quite reliable operation of commercial small scale CHPs (< 200 kW_{el})

- the plants ensure 7000 h/year of operation
- similar overall efficiencies for the compared technologies (≈ 70%)
- high electrical efficiency (20-30 %)
- Interesting char valorization possibilities

but...

- high quality feedstock (agricultural waste are a challenge)
- tar content higher than the limit suggested in the scientific literature (frequent engine maintenance required)
- char (for the moment) has to be disposed off and this is a cost

Remarks

- **co-firing of char** and biomass should be possible in real-scale grate combustion systems (technical aspects such as grate design, fuel gas recirculation and aerosol emission limits should be considered)
- char from commercial small-scale gasifiers shows interesting features that would allows its industrial utilization in adsorption and catalytic application
- market is finding its own solutions: **post-combustion** stage
- **co-gasification** can also be an interesting solution to be investigated

The authors want to thank the Autonomous Province of Bolzano, Provincia Autonoma di Bolzano – Alto Adige, Ripartizione Diritto allo studio, Università e ricerca scientifica for the financial support to the NEXT GENERATION project:

"Novel EXTension of biomass poly-GENERATION to small scale gasification systems in South-Tyrol"

CUP B56J16000780003, contract: 20/34 03/11/2016.

AUTONOME PROVINZ BOZEN - SÜDTIROL

Abteilung 40. Bildungsförderung, Universität und Forschung

PROVINCIA AUTONOMA DI BOLZANO - ALTO ADIGE

Ripartizione 40. Diritto allo Studio, Università e Ricerca scientifica

2018 EEC/WTERT Bi-Annual Conference Sustainable Waste Management: The Forefront of Innovation

The City College of New York - October 4th & 5th, 2018

A case study of gasification CHP in northern Italy in the European context and comparison to traditional combustion systems

Thank you very much for your attention!

marco.baratieri@unibz.it

Journal papers

unibz

- Ciuta, S., Patuzzi, F., Baratieri, M., & Castaldi, M. J. (2018). Enthalpy changes during pyrolysis of biomass: Interpretation of intraparticle gas sampling. *Applied Energy*, 228(April), 1985–1993. https://doi.org/10.1016/j.apenergy.2018.07.061
- Patuzzi, F., Ciuta, S., Castaldi, M. J., & Baratieri, M. (2015). Intraparticle gas sampling during wood particle pyrolysis: methodology assessment by means of thermofluidynamic modeling. *Journal of Analytical and Applied Pyrolysis*, 113, 638–645. <u>https://doi.org/10.1016/j.jaap.2015.04.015</u>
- Ciuta, S., Patuzzi, F., Baratieri, M., & Castaldi, M. J. (2014). Biomass energy behavior study during pyrolysis process by intraparticle gas sampling. *Journal of Analytical and Applied Pyrolysis*, 108, 316–322. <u>https://doi.org/10.1016/j.jaap.2014.04.012</u>

Conference proceedings

- Ciuta, S., Patuzzi, F., Baratieri, M., & Castaldi, M. J. (2014). Reaction sequence understanding during pyrolysis and gasification of biomass via intra-particle gas sampling. In Venice 2014: V International Symposium on Energy from Biomass and Waste. San Servolo, Venezia: CISA Publisher.
- Ciuta, S., Patuzzi, F., Baratieri, M., & Castaldi, M. J. (2014). Wood pyrolysis study by thermal analysis correlated with innovative intra-particle sampling technique. In *Air and Waste Management Association International Conference on Thermal Treatment Technologies and Hazardous Waste Combustors 2014* (pp. 140–149). Baltimore, MD: Air and Waste Management Association.
- Patuzzi, F., Ciuta, S., Castaldi, M. J., & Baratieri, M. (2014). Thermochemical and fluidynamic model of a wood particle subjected to pyrolysis supported by intraparticle gas sampling. In A. Nzihou, S. Guerreiro, & E. Silva Lora (Eds.), 5th International Conference on Engineering for Waste and Biomass Valorisation (WasteEng 2014) (pp. 742–754). Rio de Janeiro, Brazil: Mines d'Albi, France.
- Patuzzi, F., Ciuta, S., Castaldi, M. J., & Baratieri, M. (2014). Pyrolysis of a single wooden particle: a numerical model calibrated versus intraparticle gas sampling measurements. In ETA Florence (Ed.), 22nd European Biomass Conference & Exhibition (pp. 912–919). Hamburg, Germany. https://doi.org/10.5071/22ndEUBCE2014-3CO.10.3
- Patuzzi, F., Ciuta, S., Baratieri, M., Mimmo, T., & Castaldi, M. J. (2013). Intraparticle gas sampling during biomass non-oxidant thermal treatment for kinetic behavior study. In *Air and Waste Management Association International Conference on Thermal Treatment Technologies and Hazardous Waste Combustors 2013* (pp. 311–318). San Antonio, TX: Air and Waste Management Association.
- Patuzzi, F., Ciuta, S., Baratieri, M., & Castaldi, M. J. (2018). Analysis and interpretation of intraparticle sampling data: assessment of the exothermicity effect during biomass pyrolysis. In A. Nzihou & P. Stehlik (Eds.), 7th International Conference on Engineering for Waste and Biomass Valorisation (WasteEng 2018) (p. 110). Prague, Czech Republic: IMT Mines Albi.
- Ciuta, S., Patuzzi, F., Castaldi, M. J., & Baratieri, M. (2014). Innovative intraparticle gas sampling technique for biomass pyrolysis reaction mechanism study. In A. Nzihou, S. Guerreiro, & E. Silva Lora (Eds.), 5th International Conference on Engineering for Waste and Biomass Valorisation (WasteEng 2014) - Book of Abstracts (p. 89). Rio de Janeiro, Brazil: Mines d'Albi, France.

Presentations

- Patuzzi, F., Ciuta, S., Castaldi, M. J., & Baratieri, M. (2015). Finite volumes numerical model for the assessment of intraparticle gas sampling during the pyrolysis of a single wooden particle. In ETA Florence (Ed.), 23rd European Biomass Conference & Exhibition. Vienna, Austria.
- Ciuta, S., Patuzzi, F., Castaldi, M. J., & Baratieri, M. (2014). Energy change mechanism during biomass pyrolysis. In *WtERT Waste-to-Energy Research and Technology Council Bi-Annual Meeting*. Columbia University, New York.
- Ciuta, S., Patuzzi, F., Castaldi, M. J., & Baratieri, M. (2014). Biomass decomposition reaction sequence analysis using simultaneous gas sampling and temperature measurements. In *AIChE Annual Meeting*. Atlanta, GA.
- Ciuta, S., Patuzzi, F., Castaldi, M. J., & Baratieri, M. (2013). Energy change mechanisms study during biomass pyrolysis by in-particle gas sampling. In AIChE Annual Meeting. San Francisco, CA.