

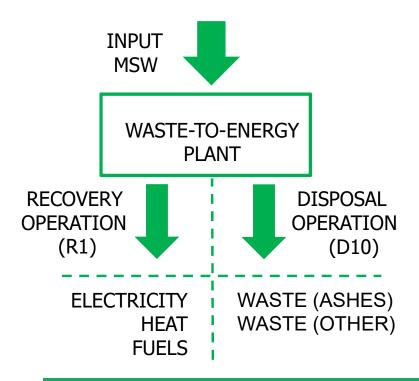
Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

2018 EEC/WTERT Bi-Annual Conference October 5th, 2018

Applications of the 3T Method as an efficiency assessment tool for Waste-to-Energy facilities and numerical comparisons with the R1 Formula

Stergios Vakalis

Free University of Bozen-Bolzano, Faculty of Science and Technology Bioenergy & Biofuels research group


Introduction and Scope of the 3T Method

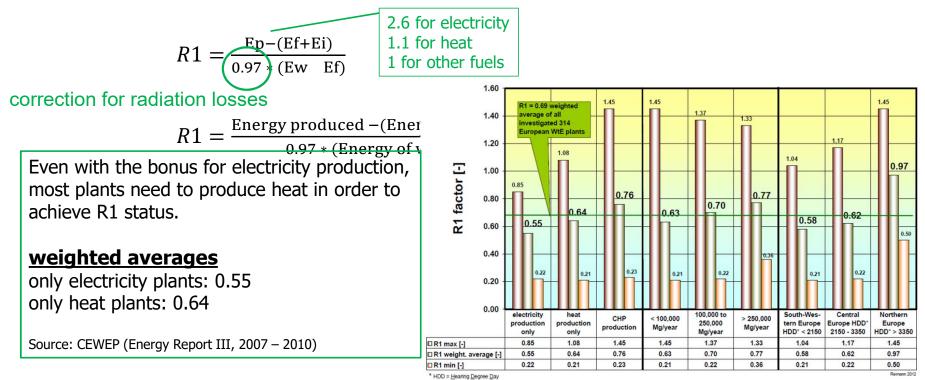
- The 3T method aims to assess the efficiency of waste-to-energy plants in an integrated way.
 - Quality of produced materials should also be taken into consideration.
- Waste-to-energy is the term that addresses the energy production by means of thermal treatment of (primarily) municipal solid waste; also commercial and Industrial waste can be considered.
 - Incineration is the most representative technology (by far), but also gasification and pyrolysis are gradually gaining ground and may be viable alternatives in the near future.
- Ultimately, the 3T methods aims to provide the framework for comparing waste-to-energy technologies with other "energy from waste" technologies.
 - "Energy from waste" which is a more general term that includes a broader ranger of technological possibilities.

The dual nature of waste-to-energy

Directive 2008/98/EU

(of the European parliament and of the council of 19 November 2008 on waste)

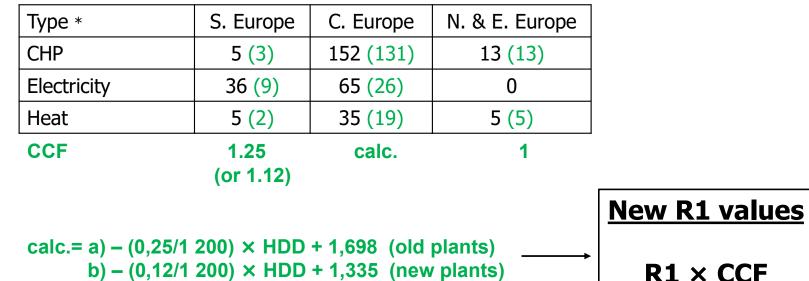
- 1. Waste is used principally as a fuel for energy generation and thus they belong to category 1 of the Recovery Operations (ANNEX I), i.e. R 1.
- 2. The residues of the treatment are landfilled on land and thus they belong to category 10 of the Disposal Operations (ANNEX II), i.e. D 10.


Introduction of the R1 Energy Efficiency Formula

- The issue of "duality" has been of high importance. Each waste-to-energy facility could be considered an energy production or a disposal facility according to the assigned category (for licensing, taxation etc.).
- In order to address this issue, European Commission integrated the R1 formula (that was developed by Dieter Reimann) in the second revision of the Waste Framework Directive of 2008.
- The parameters for each waste-to-energy facility are inserted to the R1 formula and the ones who have values over 0.65 (or 0.6 for older plants) achieve the R1 status.
- The R1 formula played an important role in assisting the waste-to-energy plants to receive a legal status, especially during a period that the specifics of the waste-to-energy sector where not fully understood by the lawmakers.
- R1 formula is not portrayed to be a pure energy efficiency formula but a "utilization efficiency" formula.

Thermodynamic inconsistencies of the R1 Formula

The introduction of the climate correction factor

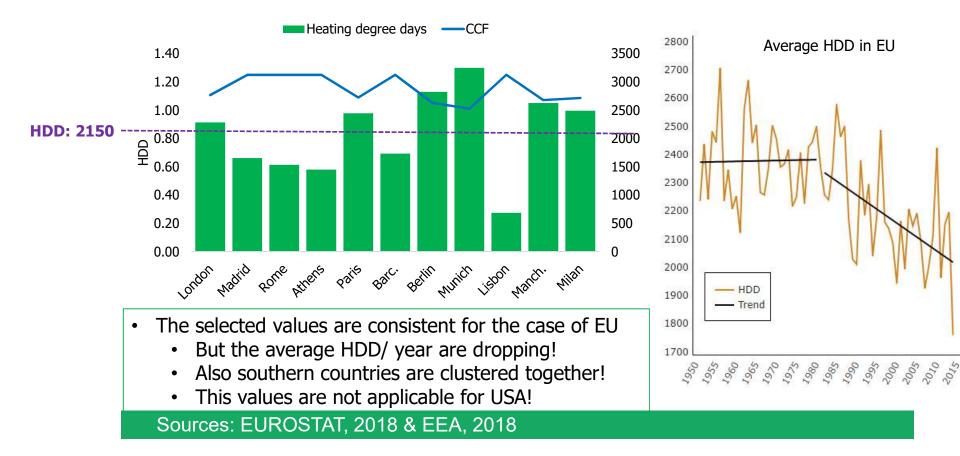

< 2150

COMMISSION DIRECTIVE (EU) 2015/1127

of 10 July 2015 amending Annex II to Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain Directives

14)	
(20	
П	
s in	
plants	
WtĒ	

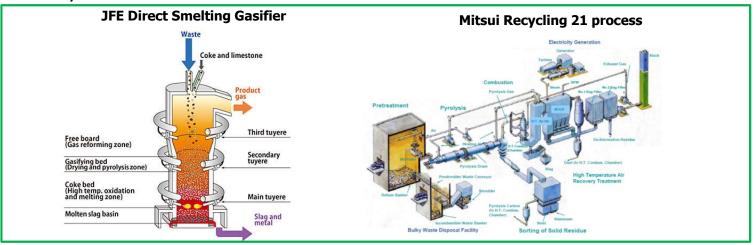
HDD


2150 - 3350

> 3350

Application of the climate correction factor

The main drawbacks of the R1 Energy Efficiency Formula


- The R1 Formula is not thermodynamically consistent and the results that are derived from the formula cannot be compared to other technologies outside the waste-to-energy bubble.
- The R1 Formula does not properly assess the production of electricity & heat and it doesn't consider fuels/ chemicals.
- The climate correction factor (CCF) is only applicable to European countries and the present climate trends indicate that a correction in the (correction) factor will be necessary.

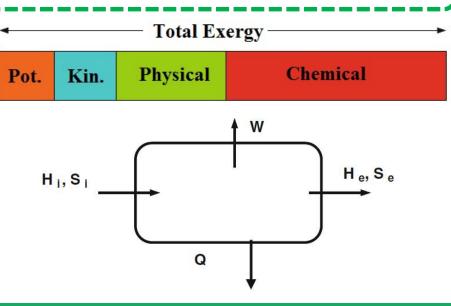
The framework of the energy efficiency should be expanded

- The R1 formula is restricted to incineration plants and does not provide a solid framework for the integration of novel technologies like pyrolysis and gasification which produce gaseous, liquid and solid fuels with significant heating value.
- Waste-to-energy plants are not only energy production units but also metal recovery facilities.

Source: M. Castaldi & N. Themelis (2010). The Case for Increasing the Global Capacity for Waste to Energy (WTE). Waste and Biomass Valor 1:91–105.

Question

Can we provide a more integrated method for assessing the operation of waste-to-energy plants?



Application of exergy as a quality indicator

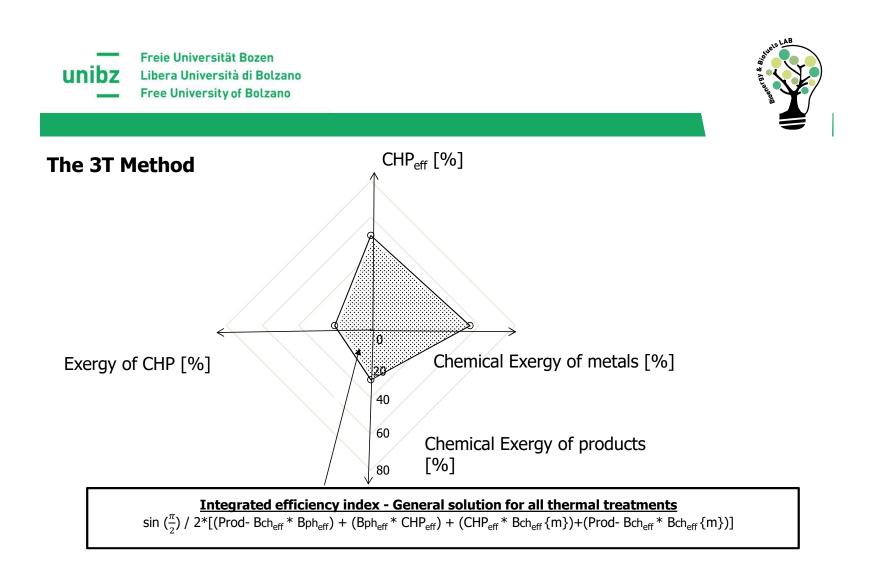
Measure of the maximum amount of work that can theoretically be obtained by bringing a resource into equilibrium with its surroundings through a reversible process.

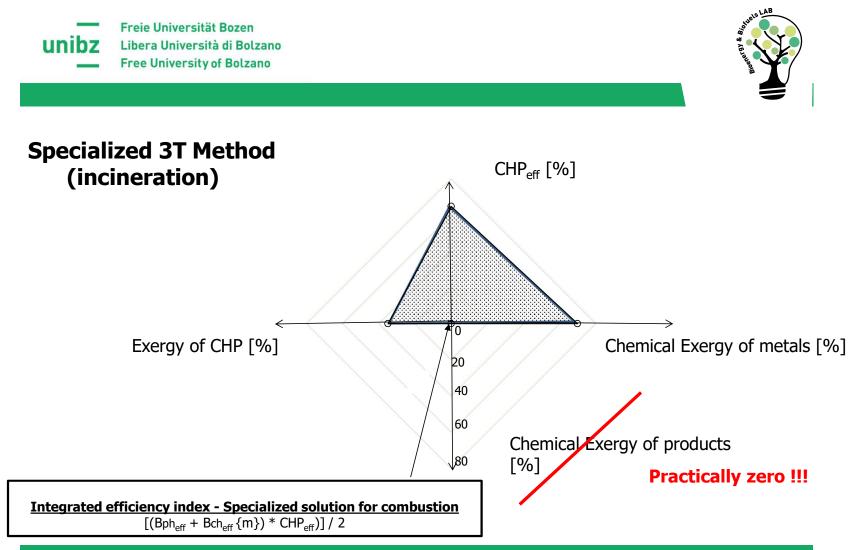
$$[B = h - ho - To (s - so)]$$

- A linear combination of the entropy and energy balances
- Reflects the 'quality' of energy

The concept of exergy in waste-to-energy plants

Energy (CHP production) Materials/ Fuels/ Chemicals Electricity Biofuels Metals Heat Physical Exergy **Chemical Exergy Electricity** \rightarrow 1:1 conversion of energy Depends on the lower heating value and on the molecular structure of to exergy the products: $B_{ch} = \beta * LHV$ **Heat** \rightarrow conversion of energy to exergy For biomass the β factor is: is correlated to T and P, e.g. for a perfect gas with constant Cp: $\frac{1.0414 \quad .0177 \left[\frac{H}{C}\right] - 0.3328 \left[\frac{O}{C}\right] \left(1 + 0.0537 \left[\frac{H}{C}\right]\right)}{1.0414 \quad .0177 \left[\frac{H}{C}\right] \left(1 + 0.0537 \left[\frac{H}{C}\right]\right)}$ ß = $B_{ph} = Cp [(T-To) - (To ln (T/To))] + R To ln (P/Po)$


Waste-to-energy can produce...

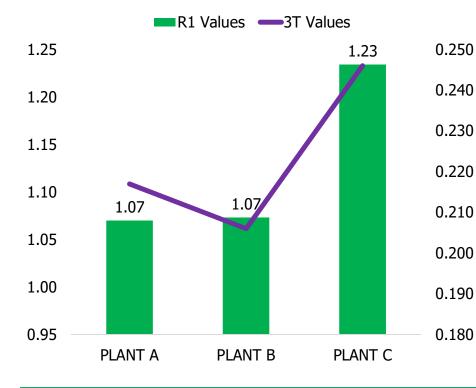


Selected energy and exergy parameters for application

- I. CHP efficiency
- II. The physical exergy of CHP efficiency
 - instead of R1 factors (2.6 & 1.1)
- III. Chemical exergy efficiency of gaseous fuels, biooil etc.
- IV. Chemical exergy efficiency of metals

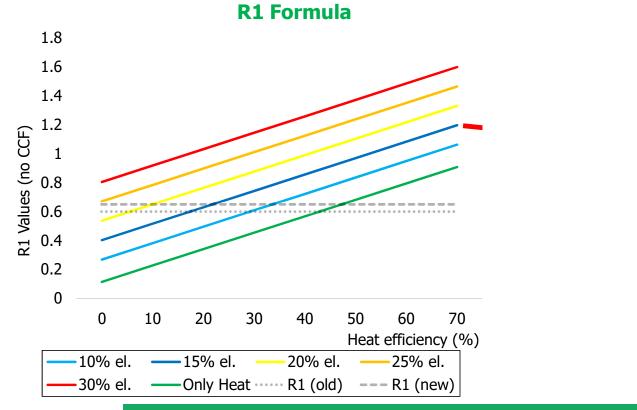
Source: S. Vakalis, K. Moustakas and M. Loizidou (2018). Assessing the 3T method as a replacement to R1 formula for measuring the Efficiency of waste-to-energy plants. Waste Management & Research 36, 810 – 817

Source: S. Vakalis, K. Moustakas and M. Loizidou (2018). Assessing the 3T method as a replacement to R1 formula for measuring the Efficiency of waste-to-energy plants. Waste Management & Research 36, 810 – 817



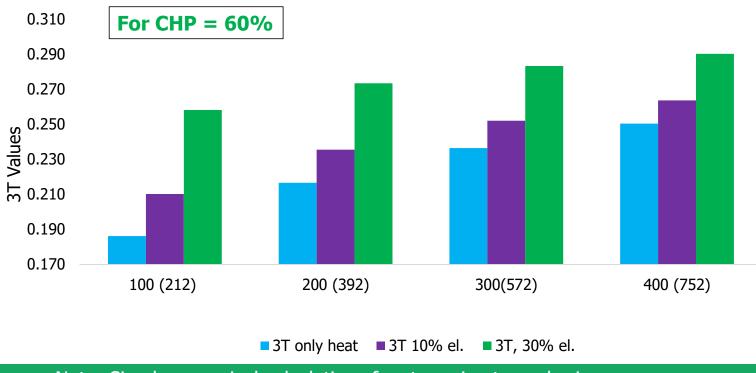
3T & R1 application on Waste-to-Energy plants

	Plant A	Plant B	Plant C
Electrical efficiency [%]	17 %	21 %	27 %
Thermal efficiency [%]	55 %	45 %	45 %
Temperature of output heat [°C]	85	85	85
Physical exergy efficiency [%]	25.22 %	27.46 %	33.23 %
Exergy efficiency of metals [%]	35	35	35



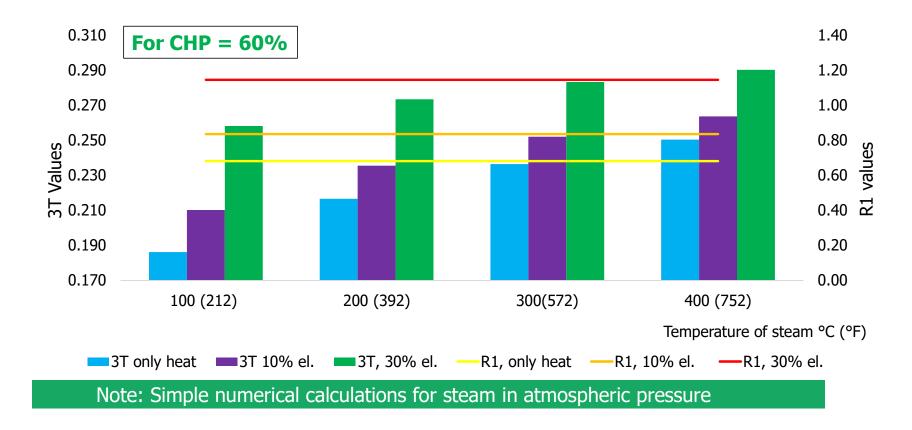
250	
240	 Plants A & B have (almost) the same R1 values.
230	• For the same cases, the 3T method provides vastly different results.
220	• The discrepancy in the results is such, that it becomes clear that the two
210	methods take different things into
200	consideration.The recovery of metals is (for example)
190	one significant parameter.

Numerical results of R1 vs 3T – Recovering the metals



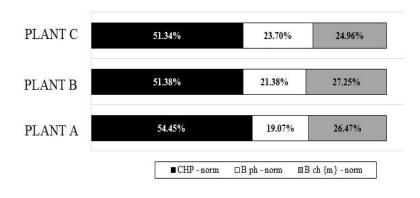
Note: Simple numerical calculations for steam in atmospheric pressure

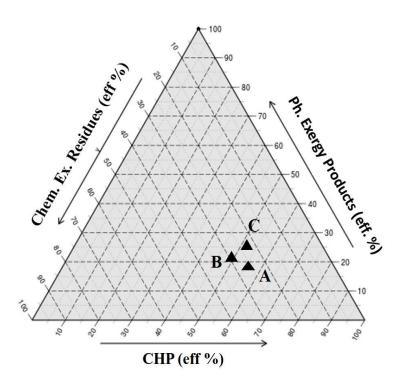
Numerical results of R1 vs 3T – The effect of temperature



Note: Simple numerical calculations for steam in atmospheric pressure

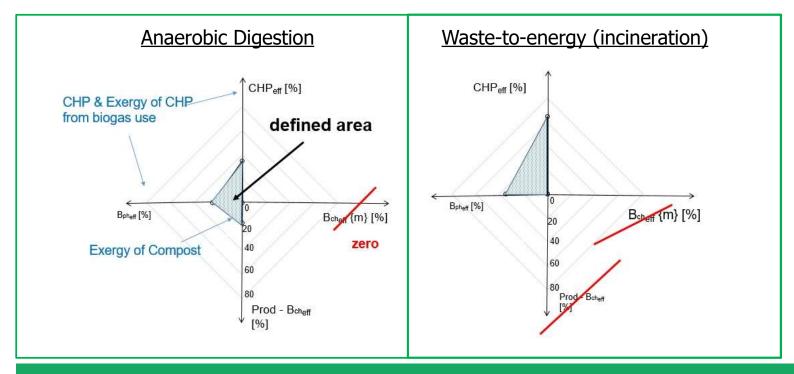
Numerical results of R1 vs 3T – The effect of steam temperature





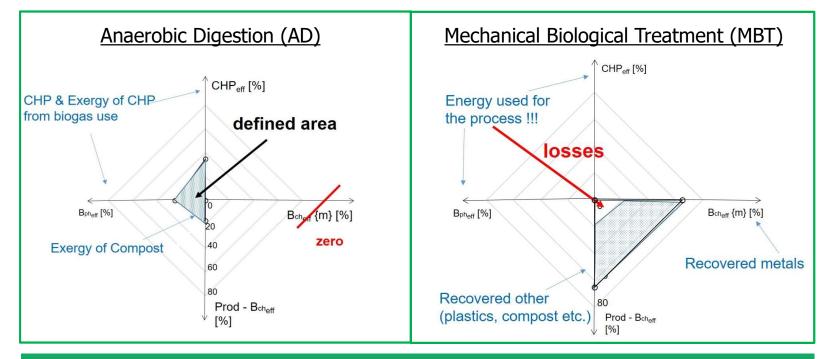
Visual Mapping with the 3T Method

Normalization of each individual efficiency


One additional feature of the 3T Method

- The 3T method can be used in order to directly compare waste-to-energy with other waste management strategies.
- The method is applicable to waste management strategies that recover energy and materials (i.e. EfW technologies).
 - e.g. the case of simple landfilling would not be a useful example.
 - but AD can be compared directly with waste-to-energy (example provided)
- Some other (recovery) strategies could be the following:
 - Mechanical Biological Treatment
 - Landfill (with landfill gas recovery) plus landfill mining

Comparison of different Energy-from-Waste strategies



Source: S. Vakalis, K. Moustakas, M. Baratieri, M. Loizidou (2018). The 3T method as an assessment tool for comparing different waste management strategies - (submitted to) <u>Waste and Biomass Valorization</u>

Possible combination of different Waste Management strategies

Source: S. Vakalis, K. Moustakas, M. Baratieri, M. Loizidou (2018). The 3T method as an assessment tool for comparing different waste management strategies - (submitted to) <u>Waste and Biomass Valorization</u>

Conclusions

- R1 formula has been a great first tool for assessing waste-to-energy plants.
- The gradual commercialization of novel waste-to-energy technologies requires the development of new tools that will be more flexible and will go beyond the case of incineration.
- This work proposes the 3T method, where thermodynamic parameters are combined in a radar graph and the overall efficiency is calculated from the area of the trapezoid.
- The method includes also the recovery of metals and is in good agreement with the concept of "circular economy".
- The 3T method calculates different results (with different trends) when compared to the R1 formula, i.e. the R1 is not considering important parameters even for the simple case of incineration.
- By using the 3T method the comparison not only of different waste-to-energy technologies, but also other waste management strategies, becomes possible.

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

2018 EEC/WTERT Bi-Annual Conference October 5th, 2018

THANK YOU FOR YOUR ATTENTION !

stergios.vakalis@outlook.com (Stergios Vakalis)

Free University of Bozen-Bolzano Bioenergy & Biofuels research group

